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Abstract

We present a projection method for the solution of the diffusive transport and reaction equations of electrochemical
systems on irregular time-dependent domains. Specific applications include electrodeposition of copper in sub-micron
trenches, as well as any other electrochemical system with an arbitrarily shaped bulk region of dilute electrolyte solution.
Our method uses a finite volume spatial discretization that is second-order accurate throughout, including a nonuniform
region used as a transition to the far-field chemical concentrations. Time integration is performed with a splitting technique
that includes a projection step to solve for the electric potential. The resulting method is first-order accurate in time, and is
observed to be stable for relatively large time steps. Furthermore, the algorithm complexity scales very respectably with
grid refinement and is naturally parallelizable.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Overview

The purpose of this paper is to present a novel methodology for solving the governing equations of elec-
trochemistry under conditions of dilute electrolyte solution. Such systems, with irregular and moving bound-
aries, are of interest in copper electrodeposition and play an important role in the fabrication of interconnects
for the next generation of computer processors [1] (see Fig. 1).

Our interest is to simulate copper infill of sub-micron scale trenches. This problem is inherently multiscale
because the chemical reactions at the copper surface represent a length scale of nanometers (surface
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Fig. 1. Schematic of a multiscale simulation of the electrochemical process for manufacturing on-chip copper interconnects. The dots
represent Cu2+ ions in solution, with the film on the surface being metallic copper.
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roughness) and a timescale of nanoseconds to microseconds, while the diffusion and migration processes in the
electrolyte solution occur at the micrometer to millimeter length scale and millisecond to seconds time scale [2].
A hybrid simulation methodology was proposed and implemented in [3] and was used to study trench infill.
This approach consisted of two codes linked together: a finite difference code in the electrolyte region and a
kinetic Monte-Carlo code at the copper surface. Subsequent refinements of this method have been made
including the development of finite volume spatial discretization to address unphysical numerical errors (neg-
ative chemical concentrations) [6] and control systems analysis of code linkage to minimize instabilities and
improve accuracy [4].

Despite the progress that has been made, these simulation methods still suffer from high computational
cost. Two-dimensional simulations of modest resolution (100 · 100) take days to perform, scale poorly with
grid refinement and are not readily parallelizable [3]. Specifically, the simulation in the electrolyte region has
been a serious bottleneck. In this paper, we will present a numerical method which takes advantage of the
structure of the problem to achieve a considerable gain in efficiency.

This paper is organized as follows. In Section 2, we describe the governing equations for the electrolyte
region, and discuss the existing numerical approaches and their observed shortcomings. In Section 3, we derive
our numerical method directly from the governing equations. This is done in two parts: first the spatial dis-
cretization is derived by integrating the governing equations over grid-sized cells; second the temporal discret-
ization is derived by splitting the total time derivative into groups of physically related terms, and applying the
Implicit Euler method to two terms and a projection method to the third term. Section 4 briefly addresses
issues involved in the implementation. We assess the performance of our method in Section 5 by studying three
sample problems. The order of accuracy is confirmed and a point is made about the spatial and temporal
refinement required to achieve a given accuracy of the numerical solution. Also, we measure the computa-
tional complexity of our method for these three problems, and find that it scales very well as the grid is refined.
We conclude the paper by summarizing our findings and highlighting areas of possible future work.

2. Governing equations

The governing equations are stiff nonlinear partial differential equations with algebraic constraints [10].
These equations describe the time evolution of the concentrations of each chemical species, ck. They are
derived by conservation of mass with chemical reactions, diffusion and migration due to electric fields,



2322 M. Buoni, L. Petzold / Journal of Computational Physics 225 (2007) 2320–2332
ock

ot
¼ Rkðfc0kgÞ � ~r � ~N k; ð1aÞX

k

zkck ¼ 0; ð1bÞ
where Rk is the net rate of production of chemical species k due to chemical reactions, and is a function of all
the other chemical species concentrations, fc0kg. And ~N k is the flux of chemical species k due to diffusion and
migration.

The detailed form of Rk is given by considering Nrxns elementary reactions, where reaction j is given by
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Summing over all chemical reactions, the total rate of production of chemical species k is
Rkðfck0 gÞ ¼
XNrxns

j¼1

RðjÞk : ð4Þ
The detailed form of ~Nk is given by
~N k ¼ �Dk
~rck � zkukFck

~rU; ð5Þ

where U is the electric potential, Dk is the diffusion coefficient for species k, zk is the charge of species k, uk is
the mobility constant for species k, and F is Faraday’s constant. The algebraic constraint (Eq. (1b)) enforces
zero net charge density for the electrolyte solution.

Substituting Eq. (5) into Eq. (1a) yields
ock

ot
¼ Rkðfck0 gÞ þ Dkr2ck þ ðzkukF Þ ~r � ðck

~rUÞ; ð6Þ
which, together with the electroneutrality constraint (Eq. (1b)), defines our system.
Convective transport may also be included by coupling these equations to the Navier–Stokes equations [9],

but this is often neglected for systems with dimensions below 1 lm. For these systems, which will be our focus
here, diffusion dominates because the Peclet number is small (see Fig. 2).

The boundary conditions are application dependent, so we focus now on our present application: electro-
deposition. In electrodeposition, there is an active copper boundary where chemical reactions occur on the sur-
face, creating a flux of each chemical species into the electrolyte solution,
� ~Nk � n̂ ¼ J k; ð7Þ

where n̂ is the outward normal direction along the active boundary. Jk is calculated from a separate surface
reaction model using the Kinetic Monte-Carlo (KMC) method, and is a function of the surface concentrations
of the chemical species, fck0 gjsurface. For details of the KMC surface reaction model and its linkage with con-
tinuum simulations in the electrolyte region, see [3,4]. For our purposes, we regard Jk as a changing but known
quantity at any given time.

At the upper boundary there is a far-field set of fixed values for each of the chemical species concentrations
and the electric potential, represented by Dirichlet boundary conditions,
ck ¼ cFF
k ; ð8Þ

U ¼ UFF : ð9Þ
On the sides of the physical domain one can assume either zero flux or periodic boundary conditions, depend-
ing on the shape of the active copper boundary. In this paper we will assume without loss of generality a non-
periodic trench-shaped active copper boundary with zero flux boundary condition on the sides,



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Active
Boundaries

Side
Boundary

Side
Boundary

Boundary

Fig. 2. Boundary conditions shown in diagram above.
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~Nk � n̂ ¼ 0: ð10Þ

The active boundary moves due to the deposition of copper resulting from surface reactions, and is tracked
implicitly by a level set method. In the level set method, a signed distance function, /, is defined in the vicinity
of the active boundary. The / = 0 contour implicitly defines the active boundary and is tracked by solving the
advection equation
o/
ot
¼ �~v � ~r/ ¼ �vn; ð11Þ
where
vn ¼
J Cu

qCu

ð12Þ
is the velocity of the active boundary, computed by the flux of copper divided by the density of copper. This
velocity is directed normal to the interface and is extended along lines parallel to the ~r/ using the closest point
fast marching method. Details on implementation of the level set and fast marching methods may be found
elsewhere [13–16].

As mentioned above, attempts have been made to solve these equations by Drews, Li, Braatz, Alkire [5,6].
Their approach has been to use the method of lines (MOL) to transform the PDE system into an ODE system
with algebraic constraints, i.e. differential algebraic equations (DAEs). The resulting index-2 DAE system was
then solved using DASPK3 [7,8]. Although this strategy works, it was not very computationally efficient due
to difficulties with finding an effective preconditioner, which causes the code to run slowly even for modest size
spatial grids (100 · 100) and a few chemical species. Much effort has been put into trying to design better pre-
conditioners for use with DASPK in order to improve efficiency, but without much success [6]. The problem
becomes more severe as one refines the grid; code profiling reveals that the computation time scales as ðNeqnsÞp,
where Neqns is the total number of grid variables and p � 2, making highly resolved simulations computation-
ally infeasible.

The goal of this work has been to develop a computational algorithm for the solution of Eqs. (1a) and (1b)
on irregular domains with a moving active boundary that is efficient, scales well with grid refinement, and is
easy to parallelize. In the remainder of this paper, we will describe our algorithm in detail, apply it to sample
problems and measure its accuracy and efficiency, thus demonstrating that we have achieved this goal.

3. Numerical solution

The governing equations of Section 2 are solved numerically by discretizing the spatial and temporal
domains. Details of the discretization are provided in [20]. Here, we briefly describe the important points.
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3.1. Spatial discretization

The spatial domain is divided into cells of finite volume (FV). All spatial derivatives in Eq. (6) are computed
with OðDx2Þ accuracy, including boundary cells.

In our algorithm, we define two regions of cells: uniform and nonuniform. The uniform cells form the lower
region of the computational domain, and include the trench and active boundary, since all such points require
roughly the same resolution. The nonuniform cells above the trench serve as a transition zone from the trench
region to the far-field. Since this transition length is often much greater than the trench length scale, a uniform
grid here would add unnecessary computational expense. As a result, there are three distinct types of FV cells,
as shown in Fig. 3: uniform region cells, boundary cells and nonuniform region cells.

To obtain the finite volume equations, we begin in the standard way by integrating the governing PDE,
Eqs. (1a) and (1b), over a small cell in our domain. After applying the divergence theorem and approximating
boundary integrals by products of average values (at boundary midpoints) multiplied by boundary length and
area integrals by average values (at cell centroids) multiplied by area, we obtain an equation of the form:
V rel
i;j

oðckÞi;j
ot

¼ ðRHSÞðrxnsÞ þ ðRHSÞðdiffÞ þ ðRHSÞðmigrationÞ þ ðRHSÞðboundary fluxÞ
; ð13Þ
where ðckÞi;j is the concentration of chemical species k at the centroid of cell (i, j).

ðRHSÞðrxnsÞ, ðRHSÞðdiffÞ, ðRHSÞðmigrationÞ and ðRHSÞðboundary fluxÞ are the cell-integrated reaction, diffusion,
migration and boundary flux terms, given by
ðRHSÞðrxnsÞ ¼ V rel
i;j Rkðfðck0 Þi;jgÞ; ð14Þ
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where Dxi · Dyj are the dimensions of the FV cell, V rel
i;j is the volume fraction of the cell in solution, Ds is the

active boundary length and hup; hdown; hleft; hright are the fractions of the cell faces in solution (See Fig. 4).
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Finally, we note that similar spatial discretizations have been used to solve the heat and Poisson equations
on irregular domains with moving boundaries [11,12].
3.2. Temporal discretization

Temporal discretization is accomplished via a splitting technique that uses the Backward (implicit) Euler
method combined with a projection step. We split the right-hand side of Eq. (13) into three sets of terms:
(1) reaction terms, (2) diffusion terms (plus boundary flux terms), and (3) migration terms, as indicated by
the superscript used. To advance the concentration fields, ðckÞi;j, from time tn to tnþ1 ¼ tn þ Dt, two interme-
diate values, ðckÞð�;rxnsÞ

i;j and ðckÞð�;diffÞ
i;j , are calculated. Schematically, we do the following:
ðckÞðnÞi;j !reactionðckÞð�;rxnsÞ
i;j !diffusionðckÞð�;diffÞ

i;j !projection
Ui;j !migrationðckÞðnþ1Þ

i;j : ð18Þ
By projection, what is meant is that Ui,j is computed such that after migration, the charge neutrality constraint
is satisfied at every solution-containing cell center.

Starting from Eq. (13), with the left-hand side discretized in time, the algorithm proceeds as follows:

(1) Reaction terms
V rel
i;j

ððckÞð�;rxnsÞ
i;j � ðckÞðnÞi;j Þ

Dt
¼ ðRHSÞð�;rxnsÞ

: ð19Þ
(2) Diffusion terms (plus boundary flux)
V rel
i;j

ððckÞð�;diffÞ
i;j � ðckÞð�;rxnsÞ

i;j Þ
Dt

¼ ðRHSÞð�;diffÞ þ ðRHSÞðboundary fluxÞ
: ð20Þ
(3) Projection step
X
k

zkV rel
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i;j Þ
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¼
X

k

zkðRHSÞðmigrationÞ
: ð21Þ

Eq. (21), together with the charge neutrality condition,
P

kzkðckÞðnþ1Þ
i;j ¼ 0, leads to an implicit Poisson-

like equation for the electric potential, Ui;j (contained in ðRHSÞðmigrationÞ):

Dt
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k
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Fig. 4. Location of cell centroid and boundary element midpoints for a boundary cell.
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(4) Migration terms (using Ui;j obtained in step 3)
V rel
i;j

ðckÞðnþ1Þ
i;j � ðckÞð�;diffÞ

i;j

� �
Dt

¼ ðRHSÞðmigrationÞ
: ð23Þ
The resulting concentrations, ðckÞðnþ1Þ
i;j , are OðDtÞ accurate and satisfy the charge neutrality condition,P

kzkðckÞðnþ1Þ
i;j ¼ 0, to machine precision. To see that this method is convergent with OðDtÞ accuracy, we need

to verify that the discretization is OðDtÞ-consistent and 0-stable [7]. We begin by writing the FV equations as a
DAE system,
dc
dt
¼ RðcÞ þ DðcÞ þ GTðcÞk; ð24aÞ

Ac ¼ 0: ð24bÞ
Using the algebraic constraint (Eq. (24b)), we solve for k to obtain the underlying ODE system,
dc
dt
¼ RðcÞ þ DðcÞ � GTðcÞðAGTðcÞÞ�1AðRðcÞ þ DðcÞÞ: ð25Þ
Now, consider our numerical method. We have
cð�Þ � cðnÞ

Dt
¼ Rðcð�ÞÞ; ð26Þ

cð��Þ � cð�Þ

Dt
¼ Dðcð��ÞÞ; ð27Þ

cðnþ1Þ � cð��Þ

Dt
¼ GTðcð��ÞÞk; ð28Þ
where k is computed by pre-multiplying Eq. (28) by A and solving for k to obtain
k ¼ �ðAGTðcð��ÞÞÞ�1Acð��Þ

Dt
; ð29Þ
which may be expressed as (using Eqs. (26) and (27) and AcðnÞ ¼ 0)
k ¼ �ðAGTðcð��ÞÞÞ�1AðRðcð�ÞÞ þ Dðcð��ÞÞÞ: ð30Þ

Finally, substituting Eq. (30) into Eq. (28) and summing Eqs. (26)–(28) gives
cðnþ1Þ � cðnÞ

Dt
¼ R cð�Þ

� �
þ D cð��Þ

� �
� GT cð��Þ

� �
AGT cð��Þ

� �� ��1
A R cð�Þ

� �
þ D cð��Þ

� �� �
: ð31Þ
Since cð�Þ ¼ cðnÞ þOðDtÞ and cð��Þ ¼ cðnÞ þOðDtÞ, Eq. (31) may be expressed as
cðnþ1Þ � cðnÞ

Dt
¼ RðcðnÞÞ þ DðcðnÞÞ � GTðcðnÞÞðAGTðcðnÞÞÞ�1AðRðcðnÞÞ þ DðcðnÞÞÞ þOðDtÞ: ð32Þ
Comparing Eqs. (32) and (25), we see that our method is O(Dt)-consistent. To see 0-stability, start with Eq.
(32) and simply refer to the proof for the forward Euler method as given in [7].

4. Notes on implementation

In this section, we highlight some of the properties of the equations to be solved in our numerical method
and present our implementation strategies. Consider each of the four steps of the time-splitting algorithm, in
turn.

(1) Reaction terms

For the reaction terms we obtain Ncells independent nonlinear systems of Nspecies equations each for
ðckÞð�;rxnsÞ

i;j . These systems are solved by Newton’s method with an LU-decomposition of the Jacobian
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matrix (computed analytically), which is saved from adjacent FV cells and is updated only when the
method fails to converge after a predefined number of iterations. Initial guesses for the solutions to these
systems are taken to be the current time step solution at an already computed adjacent FV cell, if one is
available, or the solution at the previous time step for the current FV cell.

(2) Diffusion terms

For the diffusion terms we obtain Nspecies independent linear systems of Ncells equations each for
ðckÞð�;diffÞ

i;j . The matrices corresponding to these linear systems are symmetric for the uniform cell equa-
tions, slightly asymmetric for the nonuniform cell equations (as long as the ratio of adjacent cell sizes
is close to one) and completely asymmetric for boundary cell equations. These systems are easily and
efficiently solved by a general preconditioned iterative linear solver. We use BICGSTAB with ILU pre-
conditioning, as implemented in SPARSEKIT2 [18]. Maximum efficiency is found empirically by tuning
the ILU parameters, drop tolerance and fill level to 10�4 and +15, respectively.

(3) Projection step

The projection step requires the solution of a single linear system of Ncells equations for Ui,j, with matrix
symmetry similar in form to the matrix involving the diffusion terms.

(4) Migration terms

The migration terms require the electric potential, Ui,j, computed in the projection step. Once obtained,

the equations for the new chemical concentrations, ðckÞðnþ1Þ
i;j , are fully explicit everywhere except along

the active boundary. There, we get Nspecies small independent linear systems of Nboundary equations each,
one for each chemical species, k.

We note that steps 1, 2 and 4 are easily parallelizable, owing to the independence of the equation systems
that are solved. We plan to explore this in a future paper.

5. Numerical results

5.1. Efficiency results

To test the efficiency of our algorithm, we measure CPU time over 1000 time steps for different sized grids,
ranging from 20 · 20 to 640 · 640, with Dt = 0.0001 for each grid. In Fig. 5, we plot average time for one time
step versus number of grid variables. The CPU time vs. problem size appears to obey a power law, which we
compute as
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p ¼
log T 640

T 40

� �
log 6402

402

� � ; ð33Þ
where T40 and T640 are the CPU times for the 40 · 40 and 640 · 640 grids, respectively. From our measure-
ments, we computed a value of p = 1.22. Note that the parameter values used for this test were the same
as those given in Section 5.2.

5.2. Convergence results

We perform three sets of tests to validate the accuracy of our method. In all tests, we use three chemical
species with diffusion coefficients D1 = 1.0, D2 = 10.0, D3 = 100.0, mobility constants u1 = 1.0, u2 = 10.0,
u3 = 100.0, and charge z1 = 1.0, z2 = �2.0, z3 = �1.0. Also, in all tests, we set the top Dirichlet boundaries
to cFF

1 ¼ 3:0; cFF
2 ¼ 1:0; cFF

3 ¼ 1:0 and let the initial species concentrations be given by a narrowly peaked
two-dimensional Gaussian distribution,
c0
kðx; yÞ ¼ 5e

ððx�0:5Þ2þðy�0:5Þ2Þ
0:12 þ 1

� �
cFF

k : ð34Þ
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The time scale, s, for the evolution of the chemical concentration fields is determined by the largest diffusion

coefficient, s ¼
ffiffiffiffiffiffiffiffiffiffi

L
max Dk

q
, where L is the length scale of the physical domain. Thus, we get s ¼

ffiffiffiffiffiffiffiffi
1

100:0

q
¼ 0:1. Note

that these parameters have been nondimensionalized and represent a range of physical values that might be
used in a typical simulation. For example, diffusion coefficients for various ions in aqueous solution (Cu2+,
H+, etc.) typically range from 10�10 to 10�8 m2/s [3]. Length scales are of order 10�6 m and time scales vary
from 10�3 to 102 s [2]. The reason for using an initial Gaussian distribution, however, is for generating non-
trivial numerical solutions for testing our algorithm.

We compute the numerical solutions from t0 = 0 to t1 = s = 0.1 for grids ranging from 20 · 20, 40 · 40,
80 · 80, 160 · 160, 320 · 320 to 640 · 640. For each grid, the time step Dt ranges from 0.00512 to 0.000005,
being decreased by a factor of 4 successively. The numerical solution on the 640 · 640 grid with
Dt = 0.000005 is taken to approximate the exact solution for purposes of error calculation.

For each of our numerical solutions, we calculate the relative error in both the L2 and L1 norms as fol-
lows. First, the most refined numerical solution (Dx = 1/640, Dt = 0.000005) is averaged onto the coarser

grids, giving an approximation to the exact solution on these grids, i.e.a ðckÞðexactÞ
i;j . Then the errors are com-

puted as
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Fig. 7. Convergence (L2-norm – left, L1-norm – right) of numerical method in time (top) and space (bottom) for a trench-shaped domain
with one chemical reaction and active boundary influx, Jk ¼ 0; 1; 10; 100. The straight lines with slopes 1 and 2 indicate OðDtÞ and OðDx2Þ
accuracy, respectively.
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j¼1
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i;j Þ2
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� �1=2
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k¼1

PNx
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ððckÞ
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� �1=2
; ð35Þ

EL1 ¼
maxk;i;jjðckÞi;j � ðckÞðexactÞ

i;j j
maxk;i;jjðckÞðexactÞ

i;j j
: ð36Þ
In our first test, we use a rectangular grid with no chemical reactions and no influx along the active boundary,
Jk = 0. This test is chosen as a preliminary validation of the accuracy of our spatial discretization, projection
scheme and linear solvers. Our results are plotted in Fig. 6. We find that the method is indeed O(Dt, Dx2) accu-
rate, as expected. Also, the charge neutrality condition, Eq. (1b), is satisfied to the precision set for our linear
solvers.

In our second test, we use a trench-shaped grid with one chemical reaction, ½1� þ ½2� �10:0

30:0
½3�. The active

boundary influx, J k, is set to the same value for each chemical species and is increased during a series of four
subtests: Jk = 0.0, 1.0, 10.0, 100.0. The purpose of these subtests is to understand how large values of Jk can
degrade the accuracy of our numerical solutions. Our results are plotted in Fig. 7. Notice that for J k � 1:0,
our numerical solutions lose accuracy and converge slower than expected.
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cy, respectively.
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The conclusions we draw from this second test are as follows. First, our method retains O(Dt, Dx2) accuracy
in the presence of chemical reactions and a trench-shaped grid. For moderate values of Jk (�1.0–10.0), our
method approaches O(Dt, Dx2) accuracy as we refine Dt and Dx to the smallest tested values. Slower conver-
gence is observed for larger Dt and Dx and is more pronounced in the L1-norm. As Jk is increased further (to
100.0), the loss of accuracy becomes more severe. An explanation for this is that the exact solution exhibits a
thin boundary layer near the active boundary that becomes steeper as Jk is increased. This boundary layer is
difficult to resolve even on the most refined uniform grids, thus degrading the overall accuracy. The solution to
this problem is simple in principle: use a nonuniform grid near the active boundary. And since the active
boundary moves, the grid would have to be refined adaptively. This is an area of possible future work.

Our third test is designed to verify the accuracy of our method with a moving boundary. For this, we couple
our numerical method to a simple surface reaction model using the level set method, as described in [6]. In our
implementation of the level set method, we use a closest point algorithm to prevent our solutions from degrad-
ing to O(Dx) accuracy near the moving boundary [17]. Our results are plotted in Fig. 8. Since we moved our
boundary slowly (a distance of approximately 0.2 cells per timestep for the coarsest grids) and chose param-
eter values yielding relatively small boundary flux ðJ k 6 1Þ, we observe OðDt;Dx2Þ accuracy, as expected.

Overall, our algorithm exhibits small relative errors for moderately refined grids and time steps in most
cases. For example, we often would like to obtain a numerical solution with less than 1% relative error. From
Fig. 7, we see that this is achieved with an 80 · 80 grid and Dt = 0.00032, which means �300 time steps to
integrate from t0 = 0.0 to t1 = 0.1 for Jk = 0.0, 1.0. The same 80� 80 grid will work with Dt = 0.00008 for
Jk = 10.0 and Dt = 0.00002 for Jk = 100.0. Notice from the plots that for practical values of Dt and Dx, accu-
racy is improved most by refining Dt rather than Dx.

6. Conclusions and future work

The algorithm described here provides a general numerical strategy for solving Eqs. (1a) and (1b) on irreg-
ular domains with moving boundaries. We split the right-hand side of Eq. (1a) into three groups of physically
related terms: reaction, diffusion and migration. We then integrate the chemical concentration fields corre-
sponding to each set of terms in turn. Similar splitting techniques are commonly used to solve systems with
reaction and diffusion only and have been extended to higher order accuracy [19]. However, splitting methods
have not been combined with migration and the charge neutrality constraint (Eq. (1b)) to our knowledge. The
advantage of our method over others is in its efficiency, scalability, and ease of parallelization. It also appears
to be very stable, which is the result of using the fully Implicit Euler method to integrate the potentially stiff
reaction and diffusion terms. These properties will prove most useful when extending the algorithm to three
dimensions. Since these equations are common to most electrochemical systems, we believe our method will
be useful in many applications.
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